Nonlinear optics with metals

Martti Kauranen Department of Physics Tampere University of Technology Finland

Where is Tampere?

 TAMPERE UNIVERSITY OF TECHNOLOGY

 Department of Physics

Nanophotonics Summer School, Erice 18.7.2012

Optics in Tampere

Tampere University of Technology

- Department of **Physics** (applied optics, nonlinear optics)
- ORC (semiconductors, ultrafast optics, nanostructured materials)
- Department of **Chemistry** (photochemistry)

Spinoff companies

- Coherent (diode lasers)
- Modulight (diode lasers)
- Liekki (nanoparticle doped optical fibers)
- Corelase (fiber lasers for materials processing)
- Cavitar (pulsed illumination and visualization)
- Oseir (industrial imaging)
- Epicrystals (laser sources for projection displays)
- Reflekron (customized SESAMs)

Acknowledgments

Research group

- several students and postdocs over several years
- Optoelectronics Research Centre (TUT)

University of Eastern Finland

- Profs. Markku Kuittinen, Yuri Svirko, Jari Turunen
- Other
 - John Sipe (Toronto), Martin Albers (VTT),
- Funding
 - Academy of Finland
 - Finnish Funding Agency for Technology and Innovation
 - Ministry of Education of Finland (Research and Technology Program on Nanophotonics)

Outline

Part I: Multipole Effects in Nonlinear Optics

- electric-dipole and higher-multipole nonlinearities
- surface and bulk effects

• Part II: Second-Order Response of Nanoscale Metals

- higher-multipole radiation
- local-field effects

• Part III: Present challenges

- tailorable nonlinear response
- surface vs. bulk origin of metal nonlinearity
- towards metamaterials with optimized nonlinear response

Nanophotonics Summer School, Erice 18.7.2012

$$P(t) = \chi^{(1)} E(t) = \chi^{(1)} E_{\omega} e^{-i\omega t}$$

Department of Physics

Nonlinear optics

Material polarization

$$E(t) = E_{\omega}e^{-i\omega t}$$

$$P(t) = \chi^{(1)}E(t) + \chi^{(2)}E^2(t) + \chi^{(3)}E^3(t) + \dots$$

Second order

$$P(t) = \chi^{(2)} E^{2}(t) = \chi^{(2)} E_{\omega}^{2} e^{-i2\omega t}$$

second-harmonic generation

X(2)

 2ω

- Third order
 - third harmonic
 - original frequency

 ω

Tensorial responses

- Vector quantities E P
- Linear response

AMPERE UNIVERSITY OF TECHNOLOGY

Department of Physics

$$P_i = \sum_j \chi_{ij}^{(1)} E_j \qquad \mathbf{P} = \boldsymbol{\chi}^{(1)} \cdot \mathbf{E}$$

• Second-order response

Dispersion and permutation

Dispersion

- response depends on wavelength
- resonance enhancement
- frequency-dependent susceptibility

$$\chi_{ijk}^{(2)}(\omega_1 + \omega_2; \omega_1, \omega_2) \sim \frac{1}{(\omega_{ca} - \omega_1 - \omega_2)(\omega_{ba} - \omega_1)} + .$$

Permutation symmetry

$$\chi_{ikj}^{(2)}(\omega_{1} + \omega_{2}; \omega_{1}, \omega_{2}) = \chi_{ijk}^{(2)}(\omega_{1} + \omega_{2}; \omega_{2}, \omega_{1})$$

SHG
$$\chi_{ikj}^{(2)}(2\omega;\omega,\omega) = \chi_{ijk}^{(2)}(2\omega;\omega,\omega)$$

n

-λ

Symmetry issues

TAMPERE UNIVERSITY OF TECHNOLOGY Department of Physics

Centrosymmetry

• Inversion $r \rightarrow -r$ $E \rightarrow -E$ $P \rightarrow -P$

$$-\mathbf{P} = \chi^{(2)} : (-\mathbf{E})^2 = \chi^{(2)} : \mathbf{E}^2 = \mathbf{P}$$

Second-order materials

- noncentrosymmetric units
- noncentrosymmetric ordering
- traditionally polar order

Surface and thin films

- centrosymmetry broken
- probes based on SHG and SFG

20

dipole moment

 (\mathcal{O})

Optical activity

Chiral objects

- lack of reflection symmetry
- cannot be superimposed on its mirror image
- occur in two mirror-image forms (enantiomers)

Optical activity

- optical effects associated with chirality
- different response to circular eigenpolarizations
- polarization rotation
- circular dichroism
- reverse sign between the enantiomers

chiral

medium

Isotropic materials

• Electric-dipole response

- effective susceptibility

$$\chi^{eff} \sim \chi^{(2)}_{xyz} = -\chi^{(2)}_{xzy}$$

chirality required

second-harmonic forbidden

$$\mathbf{P}(\omega_1 + \omega_2) = \chi^{eff} \mathbf{E}(\omega_1) \times \mathbf{E}(\omega_2)$$

• Sum-frequency generation

- arabinose solution (Rentzepis 1966)
- recently reinvestigated

TAMPERE UNIVERSITY OF TECHNOLOGY Department of Physics

Nanophotonics, Erice 11-17.7.2010

Multipole interactions

- Hamiltonian $H = -\mu \cdot \mathbf{E} \mathbf{m} \cdot \mathbf{B} \mathbf{Q} : \nabla \mathbf{E} + \cdots$ weak
- Linear response

$$\mathbf{P}_{\omega} = \boldsymbol{\chi}^{ee} \cdot \mathbf{E}_{\omega} + \boldsymbol{\chi}^{em} \cdot \mathbf{B}_{\omega} + \boldsymbol{\chi}^{eQ} : \nabla \mathbf{E}_{\omega}$$
$$\mathbf{M}_{\omega} = \boldsymbol{\chi}^{me} \cdot \mathbf{E}_{\omega} \qquad \mathbf{Q}_{\omega} = \boldsymbol{\chi}^{Qe} \cdot \mathbf{E}_{\omega}$$

Second-order response

$$\mathbf{P}_{2\omega} = \boldsymbol{\chi}^{eee} : \mathbf{E}_{\omega} \mathbf{E}_{\omega} + \boldsymbol{\chi}^{eem} : \mathbf{E}_{\omega} \mathbf{B}_{\omega} + \boldsymbol{\chi}^{eeQ} : \mathbf{E}_{\omega} \nabla \mathbf{E}_{\omega}$$
$$\mathbf{M}_{2\omega} = \boldsymbol{\chi}^{mee} : \mathbf{E}_{\omega} \mathbf{E}_{\omega} \qquad \mathbf{Q}_{2\omega} = \boldsymbol{\chi}^{Qee} : \mathbf{E}_{\omega} \mathbf{E}_{\omega}$$

Electric and magnetic quantities

- Proper transformations
 - rotations

Polar vectors

- transform as r

• Electric quantities

- polar vectors
- odd under parity
- even under time reversal

Magnetic quantities

- axial vectors
- even under parity
- odd under time reversal

- Improper transformations
 - reflections, inversion

Axial vectors

 transform opposite to r under improper transformations

Multipole symmetries

Second-harmonic generation

$$P_{i} = \chi_{ijk}^{eee} E_{j} E_{k} + \chi_{ijk}^{eem} E_{j} B_{k} + \chi_{ijkl}^{eeQ} E_{j} \nabla_{k} E_{l}$$

axial 4th rank

Magnetic and quadrupole tensors

 symmetry properties are different from those of the electricdipole tensor

> electric-dipole-forbidden effects can occur

Isotropic material

- Third-rank tensors
 - full rotational symmetry

$$\chi_{xyz} = \chi_{yzx} = \chi_{zxy}$$
$$= -\chi_{xzy} = -\chi_{yxz} = -\chi_{zyx}$$

- permutation symmetry
- centrosymmetry

SHG $\chi^{eee} = 0 \qquad \chi^{me}$ $\chi^{eem} \neq 0$

- Fourth-rank tensors
 - full rotational symmetry
 - centrosymmetry

$$\chi_{iijj} \neq 0, \ \chi_{ijij} \neq 0, \ \chi_{ijji} \neq 0$$
$$\chi_{iiii} = \chi_{iijj} + \chi_{ijij} + \chi_{ijji}$$

TAMPERE UNIVERSITY OF TECHNOLOGY Department of Physics

Surface and bulk contributions

$$\mathbf{Y}^{Z} \qquad \mathbf{P}_{2\omega}^{surface} = \mathbf{\chi}^{surface} : \mathbf{E}_{\omega} \mathbf{E}_{\omega}$$
$$\mathbf{P}_{2\omega}^{bulk} = \mathbf{\chi}^{eem} : \mathbf{E}_{\omega} \mathbf{B}_{\omega} + \mathbf{\chi}^{eeQ} : \mathbf{E}_{\omega} \nabla \mathbf{E}_{\omega}$$
$$\mathbf{M}_{2\omega}^{bulk} = \mathbf{\chi}^{mee} : \mathbf{E}_{\omega} \mathbf{E}_{\omega} \qquad \mathbf{Q}_{2\omega}^{bulk} = \mathbf{\chi}^{Qee} : \mathbf{E}_{\omega} \mathbf{E}_{\omega}$$

- Surface
 - electric-dipole and higher-multipole response
 - behaves as effective electric-dipole response

• Bulk

Department of Physics

- magnetic and quadrupole response
- effective polarization

$$\mathbf{P}_{2\omega}^{eff} = \mathbf{P}_{2\omega} - \nabla \cdot \mathbf{Q}_{2\omega} + i(c/2\omega) \nabla \times \mathbf{M}_{2\omega}$$

Isotropic material

• Effective bulk polarization

$$\mathbf{P}_{2\omega}^{bulk} = \beta \mathbf{E}_{\omega} (\nabla \cdot \mathbf{E}_{\omega}) + \gamma \nabla (\mathbf{E}_{\omega} \cdot \mathbf{E}_{\omega}) + \delta' (\mathbf{E}_{\omega} \cdot \nabla) \mathbf{E}_{\omega}$$

• Bulk parameters

$$\beta = \chi_{xxyy}^{eeQ} - \chi_{xyyx}^{Qee} - \chi_{xyxy}^{Qee}$$
$$\gamma = \chi_{xyyx}^{eeQ} / 2 - \chi_{xxyy}^{Qee} - (ic/2\omega)\chi_{xyz}^{eem}$$
$$\delta' = \chi_{xyyx}^{eeQ} - 2\chi_{xyxy}^{Qee} + (ic/\omega)\chi_{xyz}^{eem}$$

Progress in Optics 51, 69 (2008)

Nanophotonics Summer School, Erice 18.7.2012

Isotropic material

Effective bulk polarization

Separable bulk contribution

Effective polarization

- two input beams required
- coherent growth in the bulk

$$L_{c} \sim \frac{1}{\left|\mathbf{k}_{2\omega} - (\mathbf{k}_{\omega,1} + \mathbf{k}_{\omega,1})\right|}$$

$$\mathbf{P}_{2\omega}^{bulk} = \delta' (\mathbf{E}_{\omega} \cdot \nabla) \mathbf{E}_{\omega}$$

- **Separation** (Shen 1980's 2000's)
 - different bulk and surface spectra in SFG
 - different coherence lengths in reflection and transmission
 - difficult due to dispersion and calibration problems

Polarization signatures

s-polarized signals

- unique signatures
- not sensitive to linear optics

$A_{2\omega}^{bulk} \propto \delta'(A_{1p}A_{2s} - A_{1s}A_{2p})$

Isotropic bulk

Isotropic surface

$$A_{2\omega}^{surface} \propto \chi_{yyz}^{surface} (A_{1p}A_{2s} + \frac{\sin\theta_2}{\sin\theta_1} A_{1s}A_{2p})$$

PRB **72**, 033412 (2005)

TAMPERE UNIVERSITY OF TECHNOLOGY Department of Physics

Experiment: Two-beam SHG

- Control beam
 - polarization fixed
- Probe beam
 - polarization varied

- SHG signals
 - reflected and transmitted
- Samples
 - poled polymer film surface dominates
 - BK7 glass surface-bulk competition?

PRB 72, 033412 (2005)

Detailed analysis of BK7

Surface-bulk interference

$$A_{2\omega} = A_{2\omega}^{surface} + SA_{2\omega}^{bulk}$$

 TAMPERE UNIVERSITY OF TECHNOLOGY

 Department of Physics

- unique expansion coefficients

$$f_{ijk} = f_{ijk}(\chi^{s,eff}_{zzz},\chi^{s,eff}_{zxx},\chi^{s,eff}_{xxz},\delta')$$

solve tensor components

Tensor analysis of BK7 glass

• Effective surface components

$$\chi_{zzz}^{s,eff} = \chi_{zzz}^{s,dipolar} + \chi_{zzz}^{s,multipolar} + \gamma = 6.4$$

$$\chi_{zxx}^{s,eff} = \chi_{zxx}^{s,dipolar} + \chi_{zxx}^{s,multipolar} + \gamma = 0.49$$

$$\chi_{xxz}^{s,eff} = \chi_{xxz}^{s,dipolar} + \chi_{xxz}^{s,multipolar} = 1$$

Separable bulk contribution

 $\delta' = 1.01$

Calibration against quartz

Opt. Express **15**, 8695 (2007) Opt. Express **16**, 8704 (2008)

TAMPERE UNIVERSITY OF TECHNOLOGY Department of Physics

Summary

Material symmetry

- strong influence on second-order nonlinear properties
- electric-dipole and higher-multipole effects
- polarization effects

Surface and bulk contributions

- unambiguous separation by two-beam SHG
- magnetic effects important in the bulk of glasses

• Future work

- models with various multipoles explicit
- materials with enhanced multipolar responses

